Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Curr Fungal Infect Rep ; 16(3): 87-97, 2022.
Article in English | MEDLINE | ID: covidwho-2014536

ABSTRACT

Purpose of Review: Invasive fungal infections are a complication of COVID-19 disease. This article reviews literature characterizing invasive fungal infections associated with COVID-19. Recent Findings: Multiple invasive fungal infections including aspergillosis, candidiasis, pneumocystosis, other non-Aspergillus molds, and endemic fungi have been reported in patients with COVID-19. Risk factors for COVID-19-associated fungal disease include underlying lung disease, diabetes, steroid or immunomodulator use, leukopenia, and malignancy. COVID-19-associated pulmonary aspergillosis (CAPA) and COVID-19-associated mucormycosis (CAM) are the most common fungal infections described. However, there is variability in the reported incidences related to use of differing diagnostic algorithms. Summary: Fungal pathogens are important cause of infection in patients with COVID-19, and the diagnostic strategies continue to evolve. Mortality in these patients is increased, and providers should operate with a high index of suspicion. Further studies will be required to elucidate the associations and pathogenesis of these diseases and best management and prevention strategies.

2.
Current fungal infection reports ; : 1-11, 2022.
Article in English | EuropePMC | ID: covidwho-1929512

ABSTRACT

Purpose of Review Invasive fungal infections are a complication of COVID-19 disease. This article reviews literature characterizing invasive fungal infections associated with COVID-19. Recent Findings Multiple invasive fungal infections including aspergillosis, candidiasis, pneumocystosis, other non-Aspergillus molds, and endemic fungi have been reported in patients with COVID-19. Risk factors for COVID-19-associated fungal disease include underlying lung disease, diabetes, steroid or immunomodulator use, leukopenia, and malignancy. COVID-19-associated pulmonary aspergillosis (CAPA) and COVID-19-associated mucormycosis (CAM) are the most common fungal infections described. However, there is variability in the reported incidences related to use of differing diagnostic algorithms. Summary Fungal pathogens are important cause of infection in patients with COVID-19, and the diagnostic strategies continue to evolve. Mortality in these patients is increased, and providers should operate with a high index of suspicion. Further studies will be required to elucidate the associations and pathogenesis of these diseases and best management and prevention strategies.

3.
Clin Infect Dis ; 74(7): 1279-1283, 2022 04 09.
Article in English | MEDLINE | ID: covidwho-1703103

ABSTRACT

The severe surge of coronavirus disease 2019 (COVID-19) cases on the Indian subcontinent in early 2021 was marked by an unusually high number of COVID-19-associated mucormycosis (CAM) cases reported during this same period. This is significantly higher than predicted based on available data about prevalence and risk factors for this condition. This may be due to an unusual alignment of multiple risk factors for this condition. There is high background prevalence of mucormycosis in India likely from a high prevalence of risk factors, including undiagnosed or poorly controlled diabetes. COVID-19-induced immune dysregulation and immune suppression from steroid therapy increase the risk. The role of environmental exposure is unclear. System factors such as lack of access to healthcare during a pandemic may result in delayed diagnosis or suboptimal management with potentially poor outcomes. Here, we review currently identified risk factors and pathogenesis of CAM in a pandemic surge.


Subject(s)
COVID-19 , Mucormycosis , Humans , India/epidemiology , Mucormycosis/complications , Risk Factors , SARS-CoV-2
5.
Transpl Infect Dis ; 24(2): e13774, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1571111

ABSTRACT

BACKGROUND: Solid organ transplant recipients (SOTR) have diminished humoral immune responses to COVID-19 vaccination and higher rates of COVID-19 vaccine breakthrough infection than the general population. Little is known about COVID-19 disease severity in SOTR with COVID-19 vaccine breakthrough infections. METHODS: Between 4/7/21 and 6/21/21, we requested case reports via the Emerging Infections Network (EIN) listserv of SARS-CoV-2 infection following COVID-19 vaccination in SOTR. Online data collection included patient demographics, dates of COVID-19 vaccine administration, and clinical data related to COVID-19. We performed a descriptive analysis of patient factors and evaluated variables contributing to critical disease or need for hospitalization. RESULTS: Sixty-six cases of SARS-CoV-2 infection after vaccination in SOTR were collected. COVID-19 occurred after the second vaccine dose in 52 (78.8%) cases, of which 43 (82.7%) occurred ≥14 days post-vaccination. There were six deaths, three occurring in fully vaccinated individuals (7.0%, n = 3/43). There was no difference in the percentage of patients who recovered from COVID-19 (70.7% vs. 72.2%, p = .90) among fully and partially vaccinated individuals. We did not identify any differences in hospitalization (60.5% vs. 55.6%, p = .72) or critical disease (20.9% vs. 33.3%, p = .30) among those who were fully versus partially vaccinated. CONCLUSIONS: SOTR vaccinated against COVID-19 can still develop severe, and even critical, COVID-19 disease. Two doses of mRNA COVID-19 vaccine may be insufficient to protect against severe disease and mortality in SOTR. Future studies to define correlates of protection in SOTR are needed.


Subject(s)
COVID-19 , Organ Transplantation , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Organ Transplantation/adverse effects , SARS-CoV-2 , Transplant Recipients , Vaccination
6.
Open forum infectious diseases ; 8(12), 2021.
Article in English | EuropePMC | ID: covidwho-1563852

ABSTRACT

Coronavirus disease 2019 (COVID-19) can become complicated by secondary invasive fungal infections (IFIs), stemming primarily from severe lung damage and immunologic deficits associated with the virus or immunomodulatory therapy. Other risk factors include poorly controlled diabetes, structural lung disease and/or other comorbidities, and fungal colonization. Opportunistic IFI following severe respiratory viral illness has been increasingly recognized, most notably with severe influenza. There have been many reports of fungal infections associated with COVID-19, initially predominated by pulmonary aspergillosis, but with recent emergence of mucormycosis, candidiasis, and endemic mycoses. These infections can be challenging to diagnose and are associated with poor outcomes. The reported incidence of IFI has varied, often related to heterogeneity in patient populations, surveillance protocols, and definitions used for classification of fungal infections. Herein, we review IFI complicating COVID-19 and address knowledge gaps related to epidemiology, diagnosis, and management of COVID-19–associated fungal infections.

7.
Clin Infect Dis ; 73(7): e1964-e1972, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1455261

ABSTRACT

BACKGROUND: People living with human immunodeficiency virus (HIV) may have numerous risk factors for acquiring coronavirus disease 2019 (COVID-19) and developing severe outcomes, but current data are conflicting. METHODS: Health-care providers enrolled consecutively, by nonrandom sampling, people living with HIV (PWH) with lab-confirmed COVID-19, diagnosed at their facilities between 1 April and 1 July 2020. Deidentified data were entered into an electronic Research Electronic Data Capture (REDCap) system. The primary endpoint was a severe outcome, defined as a composite endpoint of intensive care unit (ICU) admission, mechanical ventilation, or death. The secondary outcome was the need for hospitalization. RESULTS: There were 286 patients included; the mean age was 51.4 years (standard deviation, 14.4), 25.9% were female, and 75.4% were African American or Hispanic. Most patients (94.3%) were on antiretroviral therapy, 88.7% had HIV virologic suppression, and 80.8% had comorbidities. Within 30 days of testing positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 164 (57.3%) patients were hospitalized, and 47 (16.5%) required ICU admission. Mortality rates were 9.4% (27/286) overall, 16.5% (27/164) among those hospitalized, and 51.5% (24/47) among those admitted to an ICU. The primary composite endpoint occurred in 17.5% (50/286) of all patients and 30.5% (50/164) of hospitalized patients. Older age, chronic lung disease, and hypertension were associated with severe outcomes. A lower CD4 count (<200 cells/mm3) was associated with the primary and secondary endpoints. There were no associations between the ART regimen or lack of viral suppression and the predefined outcomes. CONCLUSIONS: Severe clinical outcomes occurred commonly in PWH with COVID-19. The risks for poor outcomes were higher in those with comorbidities and lower CD4 cell counts, despite HIV viral suppression. CLINICAL TRIALS REGISTRATION: NCT04333953.


Subject(s)
COVID-19 , HIV Infections , Aged , Female , HIV , HIV Infections/drug therapy , HIV Infections/epidemiology , Hospitalization , Humans , Middle Aged , Registries , SARS-CoV-2
8.
J Clin Pathol ; 75(8): 564-571, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1203980

ABSTRACT

AIMS: While the SARS-CoV-2 pandemic may be contained through vaccination, transfusion of convalescent plasma (CCP) from individuals who recovered from COVID-19 (CCP) is considered an alternative treatment. We investigate if CCP transfusion in patients with severe respiratory failure increases plasma titres of SARS-CoV-2 antibodies and improves clinical outcomes. METHODS: Patients with COVID-19 (n=34) were consented for CCP transfusion and serial blood draws pretransfusion and post-transfusion. Plasma SARS-CoV-2 antireceptor binding domain (RBD) IgG and IgM titres were measured by ELISA serially, and compared with serial plasma titre levels from control patients (n=68). The primary outcome was survival at 30 days, and secondary outcomes were length of ventilator and/or extracorporeal membrane oxygenation (ECMO) support, length of stay (LOS) in the hospital and in the intensive care unit (ICU). Outcomes were compared with matched control patients (n=34). Kinetics of antibodies and clinical outcomes were compared using LOess regression and ORs, respectively. RESULTS: Prior to CCP transfusion, 74% of patients were anti-RBD seropositive for IgG (median 1:3200), and 81% were anti-RBD IgM seropositive (median 1:320), while 16% were seronegative. The kinetics of antibody titres in CCP recipients were similar to controls. CCP recipients presented with similar survival, duration on ventilatory and/or ECMO support, as well as ICU and hospital LOS compared with controls. CONCLUSIONS: CCP transfusion did not increase the kinetics of SARS-CoV2 antibodies and did not result in improved clinical outcomes in patients with COVID-19 with severe respiratory failure, suggesting that CCP may not be indicated in this category of patients.


Subject(s)
COVID-19 , Respiratory Insufficiency , Antibodies, Viral , Antibody Formation , Blood Component Transfusion , COVID-19/therapy , Humans , Immunization, Passive , Immunoglobulin G , Immunoglobulin M , Plasma , RNA, Viral , Respiratory Insufficiency/therapy , SARS-CoV-2 , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL